

- · Logic Level Gate Drive
- Advanced Process Technology
- Ultra Low On-Resistance
- · Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

V _{DSS}	30V
R _{DS(on)} max.	0.006Ω
I _D	140A©

G	D	S
Gate	Drain	Source

	.			
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRL3803PbF	TO-220	Tube	50	IRL3803PbF

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	140 ⑤		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	98 ⑤	Α	
DM	Pulsed Drain Current ①	470		
P _D @T _C = 25°C	Maximum Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V_{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS} Single Pulse Avalanche Energy ②		610	mJ	
I _{AR} Avalanche Current ①		71	Α	
E _{AR} Repetitive Avalanche Energy ①		20	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
Γ _J	Operating Junction and	-55 to + 175		
Storage Temperature Range			°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.75	
$R_{ heta JC}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, I _D = 1mA
, ,	Static Drain-to-Source On-			0.006		V _{GS} = 10V, I _D = 71A④
$R_{DS(on)}$	Resistance			0.009	Ω	V _{GS} = 4.5V, I _D = 59A ④
$V_{GS(th)}$	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	55			S	$V_{DS} = 25V, I_{D} = 71A$
ı	Drain to Source Leakage Current			25	μA	$V_{DS} = 30V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
ĺ	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 16V$
IGSS	Gate-to-Source Reverse Leakage			-100	I IIA	$V_{GS} = -16V$
Q_g	Total Gate Charge			140		I _D = 71A
Q_{gs}	Gate-to-Source Charge			41	nC	$V_{DS} = 24V$
Q_{gd}	Gate-to-Drain Charge			78		V _{GS} = 4.5V , See Fig. 6 and 13④
$t_{d(on)}$	Turn-On Delay Time		14			V _{DD} = 15V
t _r	Rise Time		230		no	I _D = 71A
$t_{d(off)}$	Turn-Off Delay Time		29		ns	$R_G = 1.3\Omega$
t _f	Fall Time		35			R _D = 0.2Ω, See Fig. 10⊕
L_D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance		7.5		nH	from package and center of die contact
C _{iss}	Input Capacitance		5000			V _{GS} = 0V
Coss	Output Capacitance		1800		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		880			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			140⑤		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			470		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 71A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		120	180	ns	T _J = 25°C ,I _F = 71A
Q _{rr}	Reverse Recovery Charge		450	680	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- \odot V_{DD} = 15V, starting T_J = 25°C, L = 180 μ H, R_G = 25 Ω , I_{AS} = 20A.(See Figure 12)
- $\label{eq:local_local_local_local} \mbox{\Im} \quad I_{SD} \leq 71A, \ di/dt \leq 130A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- © Calculated continuous current based on maximum allowable junction temperature; for recommended current- handling of the package refer to Design TIP # 93-4

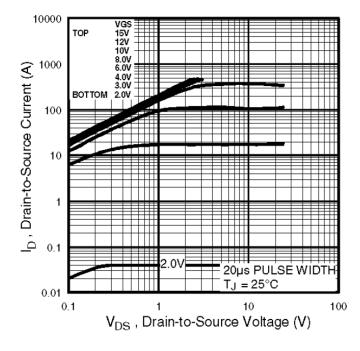


Fig. 1 Typical Output Characteristics $T_J = 25^{\circ}C$

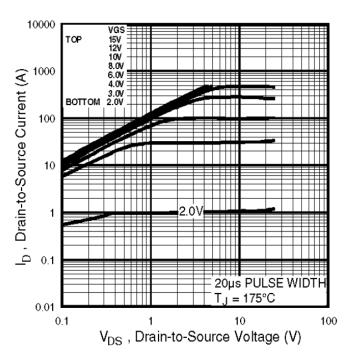
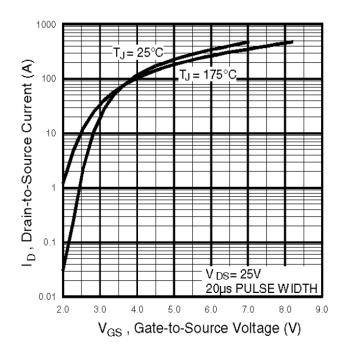
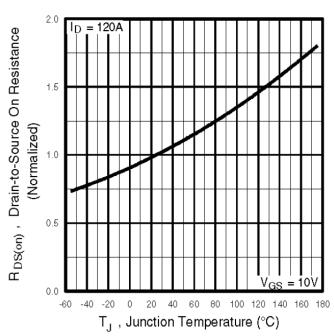
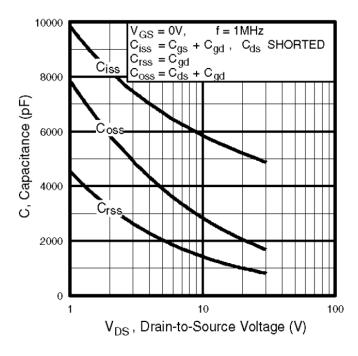
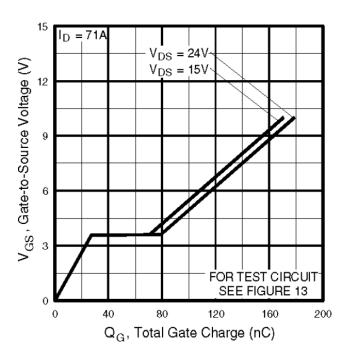


Fig. 2 Typical Output Characteristics $T_J = 175^{\circ}C$


Fig. 3 Typical Transfer Characteristics

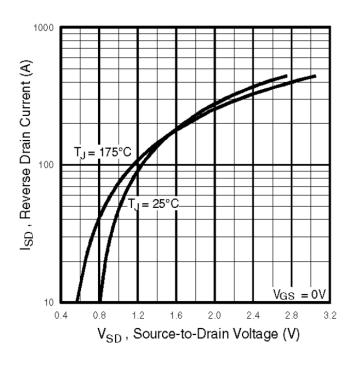

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

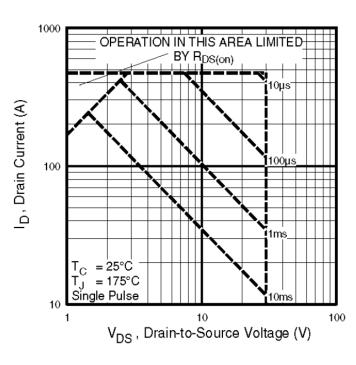


Fig 8. Maximum Safe Operating Area

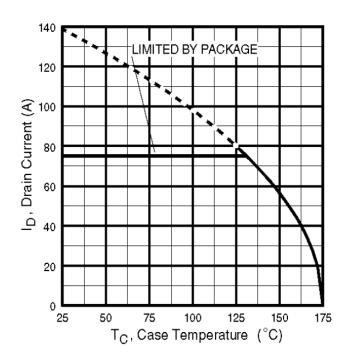


Fig 9. Maximum Drain Current vs. Case Temperature

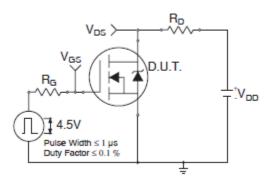


Fig 10a. Switching Time Test Circuit

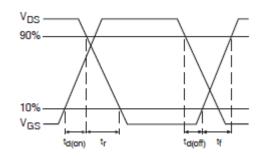


Fig 10b. Switching Time Waveforms

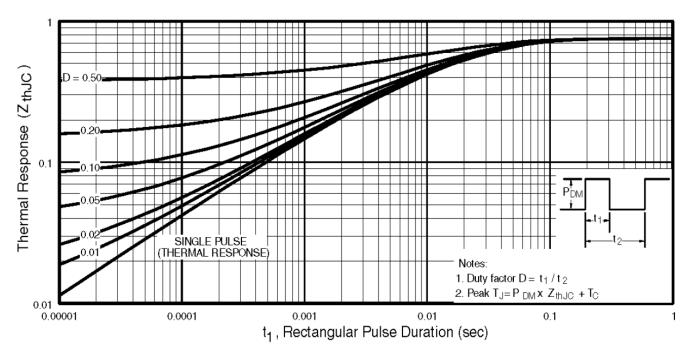


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

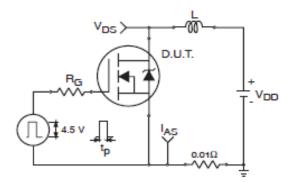


Fig 12a. Unclamped Inductive Test Circuit

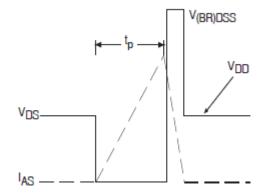
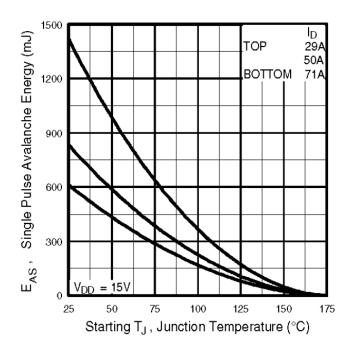
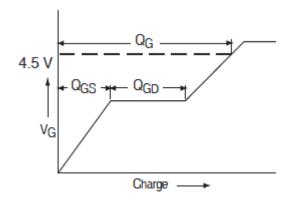
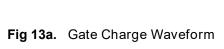





Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy vs. Drain Current

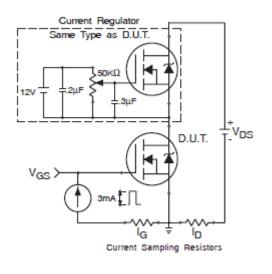
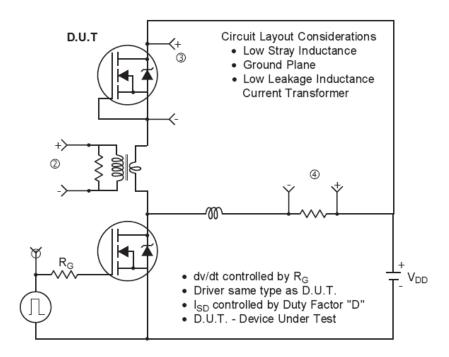



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

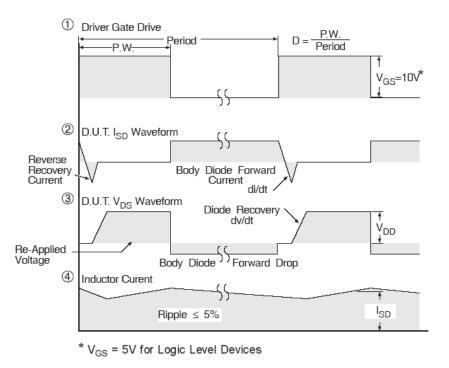
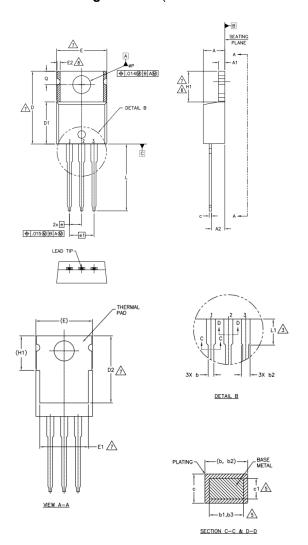



Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power

TO-220Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]. LEAD DIMENSION AND FINISH UNCONTROLLED IN L1
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS				
SYMBOL	MILLIMETERS		INC		
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
e	2.54	BSC	.100	BSC BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
øΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET

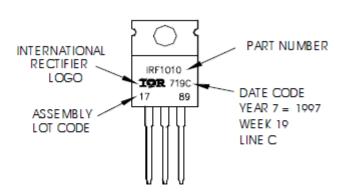
1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK 1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

Note: For the most current drawing please refer to website at http://www.irf.com/packaging


TO-220 Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Note: For the most current drawing please refer to website at http://www.irf.com/packaging

Revision History

Date	Rev.	Comments
02/25/2021	2.1	 Changed datasheet with Infineon logo - all pages. Updated datasheet based on IFX template. Removed "HEXFET® Power MOSFET" added "IR MOSFETTM "-page1 Corrected TO-220 Package outline on page 8. Added disclaimer on last page.

Trademarks of Infineon Technologies AG

HUNIC™, μIPM™, μPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGan™, COOLIR™, CoolMOS™, CoolSet™, CoolSic™, DAVE™, DI-POL™, DirectFet™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the **responsibility of customer's technical departments** to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.